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I. INTRODUCTION AND EQUATIONS OF NOTION

A one dimensional continuum with one strain variable and one internal
variable may be used to model either a long slender rod or longitudinal

deformation in a granular materiaL 1.2  In a rod the strain is the usual axial
strain, and in a granular material it Is the overall longitudinal strain. The
internal variable measures radial strain In the rod and introduces radial
forces and shears into the equations of motion. In the granular material it
measures the volume fraction of solid material and introduces forces
associated with the symmetrical expansion or collapse of pores. The internal
variable also gives rise to an extra inertial effect, which in the rod is due
to radial motion and In the granular material is due to pore dilation.

The equations that govern these two cases may be set down side by side for
comparison. Only a purely mechanical version of either theory will be
considered.

Rod Granular Material

Linear Momentum s' p pv (1) .....

Micromomentum Q - P jPau h' + gpk (2)

Kinematics z X Z + w v z velocity (3)

Sa w", vw c strain

r a R(l+u) v a volume fraction
of granules

q Z u t  q av'

Stored Energy W(u,q.t) e(v,v',e) (4)

Stress Potentials S W6  c e. (5)

Q W hu e,
q V

p a WU g a -ev
P *V

1T. W. Wright, "Nonlinear' Waves in Rods," in Proceedinge of the ZUTAM Symposiwq
on Finite Ealstici D. E. CarZson and R. T. Shield, ed ., M rtinue Nijhoff
(1981).

2j. W. Nuxiato and S. C. Coann, "A Nonlinear Theory of Mastie Materials w~ith
Void," A.zdh. Rat. Adh.' Aneal., 72, 175 (1979).
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Here Z and t are independent variables for space and time, the prime and dot
denote partial differentiation in the usual way, and subscripts denote differ-
entiation with respect to the arguments of the function. In both cases the
stored energy is an even function of its second argument. This latter fact
has a profound effect on the types of waves that can occur.

Clearly the two continuum models are mathematically identical even though
the physical interpretation of the various terms is dissimilar. In the rod
the material point with cylindrical coordinates R,Z is located instantaneously
in space at r,z so the independent kinematic variables are the axial displace-
ment w and the radial strain u, which are assumed to depend only on Z,t. In
the granular material v and ccorrespond exactly to ;i and w' , and the volume
fraction vplays the same role that u does for the rod. In the rod pis the
reference density, and a is the initial radius. In the granular material C is
also the reference density, but of the bulk material, not Just the granules,
and k is called the equilibrated inertia, which gives rise to an extra com-
ponent of kinetic energy due to the local effects of pore dilation. In the
rod S is the axial engineering stress, P is the sum of the average radial and
circumferential stresses, and Q is the average radial moment of radial shear
stress. In the granular material a is the longitudinal stress, g is the
intrinsic equilibrated body force, and h is the equilibrated stress. For

1,2further details the reader is referred to the original papers but since all
stresses are derived from similar potentials, it is evident that, except for
the signs of P and g, the analogy between the elastic rod and the granular
material is complete.

On the basis of this analogy alone an important fact emerges. Since it
is clear on physical grounds that the radius a is the natural length scale for
all motions of the rod, the quantity / ik is the natural length scale for all
motions in the granular material. The remainder of this paper will use
terminology appropriate for the rod model, but naturally all results will
apply equally well to the granular material.

II. ONE DIMENSIONAL SHOCKS

The integral form of a general one dimensional conservation law may be written
as follows.

d Mt b(t) +mlb(t)a_ f (Zt) dZ= [fG] + m] s dZ (6)
J a~t) a~t) a (t) Jf M~t

The end of points a(t) and b(t) are allowed to move arbitrarily with respect
to the material, f(Z,t) is the conserved quantity, [-I signifies the differ-
ence of the bracketed quantity between end points, G is the speed of the end
point relative to the material, m represents the flux of f added at the end
points, and s is the interior supply of f. In words the equation simply says
that the rate of change of some field quantity within an arbitrary interval is
equal to the sum of convective transport through the ends of the interval, the

:8



flux of f at the ends, and the supply of f throughout the Interior of the
Interval. In the usual way,it is postulated that this equation holds even if
there is a discontinuity in the field variables, say at a moving point with
position c(t) In the Interior of the interval. Cn3equently, as Is well
known, the Integral form of the balance law yields both the differential form
and the jump oonditions for shook waves.

-ml + S (7)

V If] [ [a] .0 ()

where V 6(t) is the shook speed and [. (-) - ()3 is the Jump across
c(t).'

Since It is reasonable to assume that the rod diameter cannot change
abruptly, u must be continuous. Conservation of mass yields nothing new, and
conservation of linear momentum with f a pv and m =3 gives the familiar jump
condition

pV Iv] . S] = 0, (9)

but conservation of micromomentum with f - 1/2 pa:2 u and m Q yields an un-
familiar jump condition

21/2 a 2 V N] + [Q] 0 . (10)

With the required compatibility conditions added

[v] *V[s] -0, fil]+ V [q] 0 (11)

the jump conditions become.

ova}j and 1/2 pa 2 VI (12)

These conditions were given previously by Nunziato and Walsh. 3  In that same
paper they also asserted that q (vx in their terms) must be continuous In a

strong shook wave. In the next section It will be shown that, in fact:

i) There are two types of shock wave possible;
and11) Although q may be continuous across one type, In general it is not;

iii) In the second type of shook wave q is always discontinuous, and
although C is usually discontinuous as well, Ee] will generally be weaker than
CO].

3 J. W. Nunaiato and P. K. WaZh, "OnV-d iwneionaZ Shook Waves in UniformZy
Distributed Granular Materials," Int. J. SoZids Strwuotee, 14, 681 (1978).
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The first type of shock is the familiar longitudinal shock for both the
rod and the granular material. The second type is not so familiar, however.
In the rod it is associated with an abrupt change in u', so the surface of the
rod will show an abrupt change of slope at the shock. In the granular mater-
ial there will be an abrupt change in the gradient of solid volume fraction,
v1. It is legitimate to call this second type of discontinuity a shock since
it involves jumps in derivatives of order one lower than those that appear in
the corresponding differential equation.

III. WEAK SHOCK WAVES

The jumps in the gradients of w and u may be expressed as follows.

+ + a, q , q +8 . (13)

With these expressions substituted in (12) the jump conditions become

2 . +
V C= W€ (u 

, q $, e+ + a) W (u, q , C ) (14)

q q

Since these two equations have the three unknowns (a, a, V), it is to be
expected that solutions will be one dimensional curves in a three dimensional
space. The exact shape and location of these curves will depend parametri-
cally on (u+ , q+, c+). Clearly one branch is always given by the trivial case
a = 8 = 0 with V arbitrary, but bifurcations may occur where the Jacobian of
equations (14) and (15) taken with respect to a and 8 vanishes at a = .= .

J C,8) W W - pV2  W e
ecq (16)

2 2
W W -1/2pa Veq qq

J (0,0) = 0 (17)

Equation (17) determines the values of V at which bifurcations occur. In
fact, it is just the characteristic condition for acceleration waves (see
equations (3.22) - (3.24) in Reference 4). To look for other branches near
the bifurcation points, other than the trivial branch, first expand the energy
W in powers of a and 8 in equations (14) and (15). In the simplest case
u+ = q+ = e+ = 0 . Bifurcations in (16) will appear at

pV 2  Wcc (0,0,0) and 1/2pa2V 2 = Wqq (0,0,0) (18)

J. W. Nunziato and E. K. Walsh, "On the Influence of Void Compaction and

Material Non-uniformity on the Propagation of One-dimensional Acceleration
Waves in Granular Materials," Arch. Rat. Mech. Anal. 64, 299 (1977).
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Recall that W is an even function in q so that odd derivatives in q will not
appear. The expansion now appears as follows.

PV 2 C Wocsa 1/2 W 0 B02 +1/2 o a 2 + 1/2 W*q B2et cqq tee eqq B -

-  1/6 Wo a ....... (19)

2 2 o o 3 21/2 pa V - + Wqeft + 1/6 Bq 0 + 1/2WN Oct +........ (20)
qq qqe qqqq qqee

The superscript 0 indicates that the derivatives of W in (19) and (20) are to
be evaluated at u+ = q+ = = 0 * It is possible to regard either a or B asthe primary variable.

Case i) To examine the branch near the first of the bifurcations in (18) let B

and V2 be given terms of a as a power series.

2  2 2 2 2  (
V V o 0 VI 1 Via . ...... (21) -v2 V833+ - -

2 3
B " O C c * ..... • ".

(22)

Substitution of (21) and (22) into (19) and (20) and comparison of terms in
lowest powers of M shows that

Si O, 1 1,2,3. ............ (23)

2 o
PV 0 cc (24)

PV 1/2W0  (25)

PV2 16O (26)av -i/6W°+ 5  etc ..... (+

This is the case discussed by Nunziato and Walsh,3 More generally, if laql<< 1,
but 0 , and u+ 0 0, e+ 0 0 as well, terms in all powers of a and B will
appear throughout the expansions (19) and (20). If account is taken of the
fact that odd derivatives of W with respect to q are odd in q , the net result
is that (23) - (26) will all be modified by additional terms of order O(aq+ )

or higher. It is easily worked out that the lowest order corrections are

PV2 "W +0(a2q 2) (27)
0 cc

W+  q
0 qq + O(a3 q ) . (28)1/2a 2W+  -

c qq

11



In (27) and (28) the supfrscrip. indicqtes that the arguments of the
derivatives of W are ( u , 0, ).

Case ti) T,, examine the branch near the second of the bifurcations in (18)
letm and V be gLiven in terms of Bas a power series. Consider the simplest
case first with q* 0. It turns out that the series for a and V only have
even powers of B in this case.

& 2 02  a4 04  ..... (29)

V2 - V2 + V 2 2 V 2 04 . ........ (30)
02 4

Substitution of (29) and (30) into (19) and (20) and comparison of equal
powers of B gives the following.

1/2pa 2V2  (31)
0 qq

pV a2  V+  a + 1/2 if +  (32)
o/. 2 cc2.qq

pa V2 u qqs 82 1/6 qqqq (33)

P(a2V2 + c4V2 ) = W + 1/2 W+ 2
2 2 4 o cc 4 etc 2 +

+ 1/2W 82 +1/24 W'34qqct 2 qqqqc (34)

1/2pa2 V2 = if + 1/2 + 1/120 + (35)4 qqt 4 qqee 2 qqqqqq

As before the superscript + indicates that the arguments are ( u+,O, c+).
These may be solved sequentially for the a and the V. • The first few terms
are +

V2 o 
qq

1/2a2p (36)

1/2 ifW " ...cqq
2 - T (37)

2 p(c- CI)

1/2 jj+2

1/2pa2 V2 uqq 1/6 *+ (38)

2 2 2 qqqq
p(c - cl )

12



whereC c =W / p, c 2 = V,as in (36) above. In the rod the speeds c1 and

c2 are associated with bulk longitudinal and shear speeds E1]. In the

granular material c1 is associated with the compressibility of the granules

without voids, and e2 with changes in the void fraction without compression of

the granules. 4 Ordinarily c 1 > c2 , but that is not necessarily true for all2 2

values of u+ and Z+. The point is that both V 2 and V 4 may be either positive

or negative depending on material properties and the strain state ahead of the
wave.

As before, a more general case occurs if 04laq+ 14<1. Then the
expansions in (29) and (30) will contain all powers of 8 . The new
coefficients, that is the coefficients of the odd powers of $ in the equations
that replace (29) and (30), will all be of order O(aq + ) and the ones already
calculated from (31) - (35), that is, the coefficients of the even powers of B,

will change only by order O(a2 q +2). This result again follows from the fact
that W is even in q.

IV. SHOCK STABILITY

Shock speeds have been calculated above simply as possible solutions of
(14) and (15). It has been convenient to give the speeds parametrically in
powers of the amplitude, using eithera or 8 as appropriate for the type of
wave. However, it is not reasonable to accept all values of shock speed
computed in this manner without some consideration of shock stability. Since
it is not possible to appeal to a thermodynamic argument in a purely
mechanical theory such as this, it is necessary to adopt some other criterion

5
such as the Lax stability criterion, whereby it is required that the
characteristic speed behind (ahead of) the shock of the same family is greater
than (less than) the shock speed. Clearly a necessary condition is that the
shock speed for nonzero amplitude must be greater than the bifurcation speed.
This condition is met if the shock speed is a monotonically increasing
function of the amplitude; but without detailed calcuation, it does not seem
possible to say whether the characteristic speed behind the shock will be
greater than the shock speed. Some of the possibilities that may occur are
shown in Figures 1 through 5.

Figure 1 shows the case discussed in Reference 3. With q+ = 0, the solid
line shows the common example of compressive shocks. The dashed line is the
continuation of the solution to (14) and (15), but now this branch is not
allowed on stability grounds as discussed above. If q+ A 0, the picture

5P. Lax, "Hyperbolic Systems of Conservation Laws II," Com. Pure Appl. Math

10, 537 (1957).
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v 2- Vo' 

a) b)

Figure 1. a) Sketch of shock speed vs. amplitude and b) Jump in q vs. ampli-
tude for quasi-longitudinal shocks. The solid and interrupted lines

show allowed shocks for q = 0 and q+ # 0 respectively. The dashed
and dotted lines show forbidden shocks for the same cases.

14



changes only slightly with the interrupted line showing allowed shocks and the
dotted line showing forbidden shocks. Figure lb shows that 8 0 in the
simplest case, but that in general 8 0 0 when q+ 0 0.

The possibilities for the second type of shock are much richer. Some of
these are shown in Figures 2-5 where it has been assumed throughout that

c Figure 2 shows the case when <0 and V >0. If q+ =0, no shocks
21  c2 n >0

at all are possible unless the amplitude is greater than a critical value, and

then the amplitude may be of either sign. If q+ # 0 , then shocks of one sign
only are possible for a limited range of amplitude, but for larje enough
amplitudes shocks of either sign are possible. The fact that q 0 0 has
merely introduced some asymmetry into the curve. Likewise the curve fora as a
function of B is symmetric if q+ = 0 and asymmetric if q+ f 0 . Figures 3 - 5
show the other possibilities. Note that in every case stable shocks may exist
for some range of amplitude if q+ j 0, and in nearly every case if q+ = 0.

V. STEADY WAVES

Steady waves in a nonlinear elastic rod have been discussed previously
for the special case when the stored energy function can be decomposed into
W(u,q,E ) = W1 (u,c) + ':2 (q). Here the analysis for steady waves will he

briefly reviewed, but for an arbitrary stored energy. In a steady wave all
field variables depend only on a special combination of Z and t, namely
= Z - ct where c is a constant speed of propagation. The partial

differential equations (1) and (2) become ordinary differential equations, and
it was shown in Reference 1 that the solution can be reduced to quadratures of
the following form,

c a f(u;A,B,c) (39)

u ' 1 g(u:A,B,c) (40)

where the functions f and g satisfy two integrals of the motion identically.
These are

2
F(u,g,f) = Wf - pc f - A = 0 (41)

G(ugf) 2Wgg + Af - W - 1/4pc2 a 2g + 1/2pc 2f - B = 0 (42)

where A and B are constants of integration. A power series solution for f and
g in terms of u may be found by differentiating (41) and (42) with respect to
u and solving each successive pair of equations for the derivatives of f and
g. The choice of initial values for f, g, and u determines the constants A
and B. For example, choosing f (0) a g (0) f 0 leads to values of AB, and
the derivatives at u = 0 as follows.

15
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a) b)

Figure 2. a) Sketch of shock speed vs. amplitude and b) Jump in c vs. ampli-

tude for radial (void volume) shocks. V2 < 2, Vi 0.

16



q+*O(0

a)
b)

Figure 3. a) Sketch of shock speed vs. amplitude and b) Jump in c vs. ampli-

tude for radial (void volume) shocks. Ir2 > O0 V2 > 0.
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a)

b)

Figure 4. a) Sketch of shock speed vs. amplitude and b) Jump in c vs. amupli-
tude for radial (void volume) shocks. V2 >0, V2 < 02 V4
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q- -

a)

b)

Figure 5. a) Sketch of shock speed vs. amplitude and b) Jump in e vs. ampli-
tude for radial (void volume) shocks. V 2 < 0,V 2< 0.
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A 0'

Au-m -o(43)

f u . 2  
(44)

Wff-

au 0 (4S)

(W 1/4pc 2a2) (V .2. f W f2)
g uuf uf u ffu

f . . . .uff) . (46)

uu (W - 1/4pc 2 a2) (Wff - pc2)

u u ff P2

I wu
U 2 22

- (Wff - pc2  (W - 1/4 Pc a "

- (W~f~ + 3Wug~

."(4Wfg fU u g g uu+ uuu

+2Wu~ + w f W u
*UJ Wff .w UfU (48)

Suuu (W - 1/4 Pc2 a 2

Truncated versions of (39) and (40) are now

2
c = fuu.+ 1/2 fuuu  (

U 2  1/2 guuu 2  1/6 gu (50)

The coefficients fu and guu are identical to those in Reference 1, and the

other two coefficients are only slightly modified so the behavior of

solutions is still the same as described in Reference 1. Thus if c is chosen
such that guu > O, solutions are solitary waves.

3g m, 2 4i ()urn sech 9 ()
Suuu 23/2 )

20



Clearly c must be chosen such that 13uul <I guuj Propagating bulges

(necks) occur if guuu < 0 (guuu > 0). The situation for a propagating bulge

is shown in Figure 6.

In terms of the elastic moduli of linear elasticity, the second

derivatives of W used above may be written (see Reference 1)

Wffu X + 211 W 4 ( X + 0), Wuf U 2X. Wg - 1/4 2 (52)

where A and j are the Lame elastic constants. Therefore

16 ( +U) 2E 2

guu a 2(X + 2V -pc 2) (U -PC)

where E is Young's modulus. The conditions on a will be satisfied if

0 < (( Pc2 /E) - 1) << 1.

If g(O) = u' 2 0 0, then (50) must be replaced by
0

u'2  .2 + g.u 1/2 guuu 2 + 1/6 g (54)

2
In this equation it turns out that if u~l 8<<l, then gu = 0(6), and both g

and guuu differ from their previous values by terms that are 0(62). If c is

chosen so that guu is negative, then solutions to (54) are periodic. The

situation that is envisioned here is shown in Figure 7. Solutions will

oscillate between the points u1 and u2 , and may be expressed in terms of

elliptic integrals. (See Reference 6, Chap. 17 for the appropriate transfor-
mations.) Because of the restriction that guu < 0, not all speeds are

possible for periodic waves. In the linear limit this gives the familiar
2 2

conditions V < pc < E or X + 2V < pc

VI. SUMMARY AND DISCUSSION

It has been shown that there is a complete mathematical analogy between

theories for a nonlinear rod and a granular material. Since rods are familiar
objects to applied mechanicians, but study of granular materials is of rela-
tively recent origin, the analogy should be useful. For example, it was noted

6M. Abrmowitz and I. Ste n, eds., Handbook of Mathematical Functions

Dover (1965).

21
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12 O1U)

u U  2al(un}2

I-!

I

2 aUl)u2a

a)
b)

Figure 6. a) Sketch of g(u) vs. u for (O) , guu > 0 and guuu < 0, and
b) Solitary wave corresponding to 6a).
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20(1+g20 2cjl~uJ

a)

b ).o-

Figure 7. a) Sketch of g(u) vs. u for gum 0, gu < 0 and guuu < 0, and

b) Periodic wave corresponding to 7a).
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that a characteristic length of ANi could be identified for a granular mate-
rial, but even more important any statement about the dynamics or deformation
of a rod has an exact counterpart for a granular material. Thus, for static
homogeneous deformations of a granular material the equation of balance for
micromomentum (2) reduces to g(v,O,c) a 0, which defines an equilibrium
relation V a v(t), and the negative of the slope of this relation defines the

analog of Poisson's ratio. Furthermore, along this equilibrium line there
will be a modified stress-strain relation, a z a (e), the slope of which
corresponds to Young's modulus E. In fact, it is Young's modulus that appears
as the first term in the numerator of (47). For the granular material the
analog modulus may be written

e

Since it is known that Youngs modulus has fundamental importance for rod
deformations, the analog modulus must have fundamental importance for
deformations in granular materials. In particular, for low frequency
disturbances with wavelengths substantially longer than the characteristic
length, it is to be expected that the analog modulus will dominate.

It has been pointed out that both rods and granular materials support two
kinds of shock wave. One is the familiar longitudinal shock for both cases,
but the second is somewhat unfamiliar. The second type of shook is associated
with the micromomentum and is accompanied by a discontinuity in the gradient
of radial strain for the rod or by a discontinuity in the gradient of volume
fraction for the granular material. In the rod such a discontinuity is

associated with a radially symmetric shearing motion so it can be readily
visualized, and it is not surprising that the speed is controlled by the bulk

shear modulus, w qq/a, which is just the second Lami constant u for a linear

material. The analog for the granular material, however, is totally unfamil-

iar, but may be of some importance. The fact that the stored energy is even

in q (or v') has also been pointed out. The symmetry of the amplitude curves

for q* = 0 in Figures 2-5 and the slight biasing to one side or the

other for q a 0 are direct consequences of that fact.

Finally, it has been pointed out that finite amplitude periodic waves and
solitary waves can propagate in either a rod or a granular material. There
are two spectral branches for wave speeds, as was noted at the end of the last
section. Detailed calculations with the elliptic integrals that satisfy (54)
would show the effect of finite amplitude on wave speed for periodic wave-
trains with a fixed wavelength.
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